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Summary 

Critical vMues of the polymer volume fraction ~2,c and the interaction parameter X~ 
have been computed for the case that the equation for the chemical potential of solvent 
contains terms t,~o~ and G~ 4 in addition to X~ .  For 0 _< t,~ _< 1/3, the limits for 
infinite chain length are ~2,% = 0 and X~ = 0.5. Quite different results are obtained for 
z,~ > 1/3, ~,% being finite and X~ lower than 1/2. Conclusions for the estimation of the 
| temperature and the entropy-of-dilution ~b parameter are discussed. 

Introduction 

In the classic theory of phase equilibria in polymer solutions advanced by Shultz 
and Flo W [1,2], the chemical potential of the solvent A#1 is expressed by the equation 

AVllRT = ln~l  q- (1 -- llra)qo2 q- Xgo~ (1) 

where m is the number of segments per chain, X is the polymer-solvent interaction 
parameter, ~1 and ~o2 are, respectively, the volume fractions of the solvent and polymer. 
The theory leads to simple dependences on m of the critical values of ~o2 and X, 

~o~,~ = (1 + rex~2) -1 

xc = (i/2)(1 + ~ - ' / ' )~  

o r  

1 1 Xr = (1/2) + (m -112 + ~ra- ) 

The limits for infinite chains are 

(2) 

(a) 

(4) 

~ 1/2 ~ 2 , c = 0 a n d X c  = (5) 

Assuming X to be given by the equation 

1 
X = ~ -  ~ ( 1 -  O/T) (6) 

where !h is the entropy-of dilution parameter and O is the Flory theta temperature, the wel] 
known result is obtained from eq(3) for the dependence on m of the critical temperature 

1 1 1~To = (1/O) + ( 1 / e r  '/~ + ~ m -  ). (7) 
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where 
O = lim Tc 

l # n  .--+ O 

For high values of m it simplifies to 

11~'~ = (110) + ( l l e r  -1/2 

Eqs (7) and (8) are currently used to estimate O and r 

(8) 

According to the theory of polymer solutions [2], the Flory temperature estimated 
from phase equilibria, O Pp', should be equal to the temperature, O A, at which the second 
virial coefficient A2 vanishes. However, by carefully analyzing data for polystyrene and 
polyethylene, Kamide et a1.[3-5] have found that the O p~' values (of both the LCST and 
UCST types, O P~' and @ps) differ fl'om O A, and assigned this finding to X being dependent 
on concentration. 

Assuming X to depend on 9% is mathematically equivalent to extending eq (1) into 
eq (9) [6,7] 

A f , / R T  = l n ~ ,  ,Af- (1  - -  1/TD,)Ct~2 Jr- X(iO 2 2 _~ g(./~3 ..~ ~,~9 2 4 + ... (9) 

which comprises three interaction parameters (X,V,() that are independent of 
concentration. Tompa [6], and Huggins and Okamoto [7] have found that inclusion of 
higher terms into eqn (1) significantly changes the coordinates of the critical point for 
finite chains, and Flory and Daoust [8] have shown that, for infinite chain length, the 
critical concentration ~2,~ need not be zero, in contrast to what is predicted by eq (5). 

It seemed worth while examining eqn (9) in more detail fo find conditions where the 
O PE temperature differs from O a. 

Results and Discussion 

Differentiating eqn (9) with respect to ~1 and equating the result to zero, we obtain 

( I l R T ) ( O A f f , I O ~ , )  = (11~1) - (1 - l / m )  - 2X~2 - 3 ~ ' ~  - 4 ( ~ 7  = e (10) 

A second derivative gives 

(1/RT)(O2A#d&,~) = - ( 1 / ~ )  + 2X + 6u~,2 + 1 2 ( ~  = 0 (11) 

Equations for X = Xc and P2 = ~2,o at the critical point for phase separation can be 
deduced from these equations. 

By eliminating Xc from eqs (10) and (11) we obtain 

(~2,~/~1,c) 2 - 3-cP~,c - 8(cc22a,c = l / m  (12) 

For fixed values of u~ and (~ (assuming u and ( to be independent of temperature) and 
for varying ~'2,c we calculate the values of m which satisfy eqn (12) (Fig. 1). 

For u~ _< 1/3, the left hand side is always positive, irrespectively of ~~ and ~2,c. 
However, with v~ > 1/3, physically meaningful, positive values of m are obtained only if 
~2,~ is larger than a certain value, ~,~, (which depends on u~ and (~). That means that, in 
this case, the critical concentration ~o~,~ for infinite chains is not equal to zero as predicted 
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Figure 1: Chain length dependence of the critical volume fraction ~2,o 
(a) uc = 1/3 and ~ = 1/4, 0 and -1/4 (curves 1 to 3). (b) uc = 0.4 and Cc = 0.1, 0 and 
-0.1 (curves 1 to 3). Broken curves in both panels for uc = 0 and r = 0 (classic theory). 
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Figure 2: Dependence on u~ of the critical parameters. Left scale X~, right scale T2,~' 

by the classic theory (where both v and ~ are set equal to zero). It can be computed by 
numerically solving the equation 

- 5  ~ ( 1 3 )  (~,o) - 3 ~ o  - 8 r  = 0 

which obtMns from eq (12) for l / m = 0  (Fig. 2). For ~, = 0, eq (13) simplifies to 

~,% = 1 - (3~) -1/2 (14) 

As shown by Fig. 1 the critical concentrations at v~ > 1/3 are less dependent on the chain 
length than at u~ < 1/3. 

For given values of ~,~, ~ ,  and ~o2,~, the critical value of X~ can be computed from 
the relation [7] 

xo = (1/2)(1 - ~,~)-~ - 3~,~ - 6r L (15) 

Fig. 3a presents the dependences of X~ vs (I + m-I/2) 2 for several values of ur the ~ 
parameter being set equal to zero, for simplicity. At ur < 1/3, the X~ value is always 
equal to 1/2 whereas at u~ > I/3 it is lower than this. There exists the.value m * (depending 
on v~) below which X~ for finite chains drops below 1/2. 

It can be seen from Figs 2 and 3b that X~ is the lower the higher vc > 1/3. It 
is also noteworthy that  the plots of X, vs (1 + rn -1/2) for v~ > 0 have lower slopes than 
for v~ = 0. Fig. 3b shows that, for vc > 1/3, the X~ values become closer to 1/2 with 
negative ~ and more remote from 1/2 for positive ones. 

The plot of X~ vs (l + m-l/2) 2 according to eqs (3) and (4) is equivalent to the plot 
of 1/To vs M -1/2 (cf. eq(8)). It follows from Fig. 3 that  both of them should be exactly 
lineal" at v~ = 0 and approximately so for vc <,~ 0.2. If vc approaches or exceeds 1/3 the 
plot should be curved. If a section of the curve for vr < 1/3 were fitted by a straight line, 
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Figure 3: Chain length dependence of the critical value of X 
(a) Curves 1 to 6 for uc = 0, 0.1, 0.2, 1/3, 0.35 and 0.4 with ~ = 0. (b) Curves 1 to 4 for 
u~ = 0.4 with r = -0 .5 ,  -0.1, 0, 0.1. Crosses denote m*. 
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extrapolation would necessarily lead to X~ < 1/2 and to an underestimation of Ob PE (if 
r < 0) or to an overestimation of | (if r > 0). Then, the @PE temperatures differ 
from the O A values. In this case the difference is an artifact. It may, however, be a real 
one if v > 1/3. Here, the X, values for long enough chains (m > m*) are lower than 1/2 
and, hence, the corresponding critical temperatures Tc are higher than | or lower than 
0~. 

Fig. 3 shows that the slope of the dependence of Xc on (1 + m-l/2) ~ is equal to unity 
only for v = 0. As v increases the dependences become non-linear and the slopes of the 
initial tangents or of linear approximation to the curves are lower than unity. Fitting, 
e.g., the initial part of the curves by the approximate formula 

1 i (16) x~ ~- x7 + p(m -1/2 + ~ -  ) 

(which for p= l  goes over into eq (4)) and assuming eq (6) to be valid, we obtain 

I/T~ = 1 /0  + p(r -~/2 (17) 

The slope S of the plot of 1~To vs 1/m 1/2 is 

s = p(r -1 (is) 

Hence, the values of r obtained by means of eq (8) are p times higher than those 
calculated with eq (18). The well known differences [2-5] in r values estimated by the 
standard procedure from the critical points and from dilute solution properties (second 
virial coefficient, intrinsic viscosity) may thus be explained. 

It is to be emphasized that these results offer merely a very simple, qualitative 
suggestion to explain the differences in O and r because the parameters v and ~ are 
assumed to be independent of temperature. We also must not neglect the fact that the 
plots of 1/To vs 1/M ~/2 for solutions of polymers (mostly non-polar), which have been 
investigated so far, are linear and seemingly support the original form of the theory. 
This probably results from a compensation of several factors at the critical point because 
a quantitative fit by the Shultz-Flory equation of the entire cloud point curves can be 
achieved only if the X parameter is treated as a rather involved function of T, ~2 and m 
[9]. 
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